A number of differentiation strategies are available, which are based on advanced product manufacturing methods and which can help offset the resulting disadvantages. Some of the characteristic features of these advanced manufacturing techniques are:

- the availability of process and setup data before the process begins,
- accurate, fast and reliable verification of setup data and
- the ability to produce customer-specific products in small batches based on the rules of mass production (mass customization)

Excellent process planning and optimization, intelligent, flexible machinery technology as well as advanced information and communications technology are absolutely essential for the design of these production processes.

An analysis of the production process in the wire industry shows that the roll straightening process is one of the key production steps. In wire production and processing, the straightening process defines the engineering and business variables which determine success or failure. If for example finished products do not conform to geometric specifications as defined in standards such as EN 10218-2, it can take more time, material and labor to produce a product, making production inefficient. In addition to conformance to geometric specifications, there is increasing interest in other information and characteristics which are very important for the downstream production process. In this context, the wire straightening operation must evolve into a manufacturing process which makes it possible to continuously identify the properties of the process material and which is also capable of constantly maintaining specific material characteristics.

Given the level of complexity, it is difficult to understand why the acceptance and utilization of semi-automatic straightening technology in the wire industry which has not kept pace with the available options.

The future of success - advanced semi-automatic straightening technology

Motivation: From a global perspective, companies which compete with each other face similar constraints, and these constraints have identical variables. However, there can be local differences which affect the variables such as labor, energy and raw material costs.
analysis of insular solutions in practical applications [1], [2] reveals that, from the list of characteristics listed above, only verification of setup data has actually been implemented. The remaining characteristics are not used in combination with semi-automatic straightening technology in practical application. Potential suppliers as well as the users of semi-automatic straightening equipment are both to blame for this situation. On the user side, management is focused exclusively on short-term profitability. It lacks creativity and does not have the courage to take risks. Despite the associated competitive disadvantages, managers are unwilling to invest in innovation which is nothing other than creativity that has become reality [3]. The level of investment is insufficient, because the persons making the decisions are reluctant to spend what they perceive to be large sums. Usually no attempt is made to weigh up the investment costs against the engineering and business benefits. Suppliers can help raise the level of investment if they offer advanced semi-automatic straightening technology which is cost-effective and suitable for the application and if they find ways of communicating the advantages of the technology in a way that the users can readily understand. In taking up the challenge, we are using a new approach rather than relying on existing strategies.

The roll straightening process

Straightening is primarily needed to modify or remove curvature in process material. Curvature is induced by mechanical and thermal effects, and it can be desirable or undesirable. As a secondary effect, the straightening process affects the mechanical properties of the process material. A straightener, which has straightening rolls arranged in two alternating rows, can effectively modify or eliminate curvature. The positioning of the adjustable straightening rolls a causes alternate elastic/plastic deformation which forms the basis for changes to the geometric and mechanical properties of the process material. Figure 1 shows selected process material and straightener variables for a process which is used to straighten a wire with diameter d. Every straightener has a specific straightening range Δ, which is determined by the spacing T (the distance between straightening rolls) and the diameter of the straightening rolls D (Figure 1). Depending on these variables, the straightening range Δ has a minimum and maximum limit and a maximum cross-sectional dimension of the process material which can be straightened. The minimum and maximum wire diameter d_min and d_max are relevant parameters for round wire.

$$d_{\text{min}} \leq \Delta \leq d_{\text{max}}$$  \hspace{1cm} \text{Equation 1}

The number of rolls which are needed in a straightener depends on the elongation limit R_p and the range of the radius of curvature Δr using the maximum (r_max) and minimum radius of curvature (r_min).

$$\Delta r = |r_{\text{max}} - r_{\text{min}}|$$  \hspace{1cm} \text{Equation 2}

The rule of thumb is that in order to achieve good finished product quality, the number of rolls which are needed increases as the elongation limit and the range of the radius of curvature increase.

Fuzzy logic is used to determine the number of rolls n. Knowledge based on empirical data can be formulated in verbal rules for input into a fuzzy logic system. The knowledge base consists of linguistic terms (membership functions) for the input and output variables, the rule base and the inference and defuzzification functions [5]. The rule base creates a link between the range of the curvature of radius Δr and the elongation limit R_p as the input variables and the number of rolls n as the output variable. The use of an appropriate inference mechanism and a specific defuzzification method finally produces a specific transformation pattern. Thus a set of sharply defined input variables can be used to generate a sharply defined output variable. The table shows some discrete values for the number of rolls n, which were derived from the input variables elongation limit R_p and range of the radius of curvature Δr.

| Values for the number of straightening rolls n based on fuzzy logic |
|---------------------------------|--------|------|
| r [mm] | R_p [MPa] | n [-] |
| 0  | 1000  | 5   |
| 60 | 1000   | 7   |
| 100 | 1000   | 9   |
| 100 | 2000   | 11  |
| 160 | 2000   | 13  |

$$P_i = F_{\text{iA}} \cdot \tan(\alpha_{\text{m}} + \rho_i') \cdot \frac{d_i}{2} \cdot \frac{\pi \cdot n_{\text{G}}}{30}$$  \hspace{1cm} \text{Equation 3}

The adjustment force F_{\text{iA}} results from the deformation of the process material in the area which is affected by straightening roll i. It is equal to the amount of straightening force |F_{iR}i| (Equation 4), which is applied at the point where process material contacts the straightening roll in correlation with reaction forces.

$$F_{\text{iA}} = |F_{iR}i|$$  \hspace{1cm} \text{Equation 4}

Analysis of the quasi-static case in the x-y plane (Figure 1) allows us to ignore external forces and the tangential reaction force F_n. The radial reaction force at the straightening roll is equal to the resulting straightening force (Figure 2 a). If we also ignore the spacing which has changed by ΔT, then the straightening force F_{iA} is only made up of the vertical component of the resulting straightening force F_{iVer} (Equation 5, Figure 2 b).
STRAIGHTENING

\[ F_{IR} = |F_{iver}| \quad \text{Equation 5} \]

Calculation of the amount of non-dimensional straightening force \( |F_{IR}| \) using Equation 6 is based on equilibrium analysis which includes the bending moments at the rolls (Figure 2c) and the spacing.

\[ |F^*_{IR}| = |M^*_{(i-1)v}| + |2 \cdot M^*_{iv}| + |M^*_{(i+1)v}| \quad \text{Equation 6} \]

The use of non-dimensional values (indicated by an asterisk) simplifies the calculation [5]. Equation 7 is used to calculate the adjustment force \( F_{IA} \) (Equation 4) or the actual straightening force \( |F_{IR}| \).

\[ |F_{IR}| = \left( \frac{R_p \cdot \pi \cdot d^3}{16 \cdot T} \right) |F^*_{IA}| \quad \text{Equation 7} \]

The analysis presented above shows that calculation of the non-dimensional bending moments \( M^*_{(i-1)v}, M^*_{iv}, \) and \( M^*_{(i+1)v} \) is needed to determine the power which is required to achieve deformation. Simulation of the straightening process [6] can be run to generate numeric bending moment/curvature graphs. The analysis uses iteration to calculate the curve for bending moment \( M^* = f(x) \) (Figure 2c), curvature \( \kappa^* = f(x) \) and the bending line of the process material \( y = f(x) \) for a given roll adjustment. With the bending moment curve also the non-dimensional values for the bending moments for calculating the amount of power required are known.

Concept

The section on motivation described important characteristics of an advanced production process. Conventional straighteners do not possess these characteristics. The straightening rolls, which are the tools on straighteners, can be adjusted, but the adjustment is not defined and reproducible, because the equipment which would be required to do so such as instrumentation is lacking. Tools such as wrenches or screwdrivers are used to move the adjustment screws until the process material has the right curvature at the outlet or other quality criteria are met. Conventional straighteners have a static design. There is no way for the user to expand the application horizon to handle alternative cross-sectional geometries or materials. As a result, they are not suitable for tomorrow’s advanced manufacturing scenarios.

Instead of using simple tools to adjust straightening rolls, advanced semi-automatic straighteners are equipped with actuators which have a motor and a gear unit. These actuators work in conjunction with automation equipment and software to determine and set the target position of the straightening rolls based on the desired finished product quality. This type of design leads to the following functional profile:

- Guaranteed high actuating forces
- Remote operation
- Minimizes operator error
- Minimizes the time, human resources and volume of process material needed to achieve the desired product quality
- Precise, automatic setting at specific tool positions which is appropriate for a particular process material and tool geometry

The conceptual design of the advanced semi-automated straightener contains three sub-systems. The mechanical, electrical and software subsystems (Figure 3) are based on lean design principles, means that the component count is kept to a minimum.

Mechanical subsystem

The servomotor (M), planetary gear (G), spindle adjustment mechanism and slide as well as the roll axis and the straightening roll are located in the mechanical system power train (Figure 4). The combination of all of these elements on a single module is the revolutionary new feature of this design. Because the system is modular, customer-specific versions of the straighteners can be produced quickly and efficiently while still adhering to the laws of mass production and the applicable pricing guidelines.
Straightening can be produced cost-efficiently at short notice on customer request. Advanced straightening technology uses process simulation [6] to determine optimal spacing \( T \) and maximum straightening range \( \Delta \) (Equation 2). Optimization of spacing \( T \) is based on the level of finished product quality that the customer wants as well as the material characteristics.

Modular design also offers the advantage that modules with actuators can be paired with modules that have non-adjustable straightening rolls. Customers can maintain the functional profile at a lower investment cost. From the user’s point of view, advanced straightening technology based on mass customization offers the advantage that products can be made in small lots using a mass customization process. This approach is feasible if the straightening equipment offers variable spacing \( T \). Users can adjust roll spacing on site (Figure 3) to create perfect conditions for handling special materials or cross-sections (wire, tube, etc.). Theoretical and practical results demonstrate the significant influence which spacing \( T \) has on finished product quality and the required roll adjustment accuracy [8].

With the exception of the motor and the gear unit, the elements in the mechanical subsystem are mounted on a high-precision gear unit, the elements in the mechanical subsystem are mounted on a high-precision mechanism. The HMI, software and the communication with the module inverters provide an alternative solution. The modular design and topology support genuine plug & play functionality. An actuator and servo converter can be swapped without any additional effort because all communication settings and initialization of new components are performed in the factory. The system can be regenerated by changing components without any loss of information.

No proximity switches or sensors are used to detect end of travel or for travel to the home position on advanced semi-automatic straightening equipment, because intelligent routines in the software subsystem reliably perform these functions. Elimination of the need for a higher level controller (e.g. a PLC or computer) helps keep the component count down. The HMI, software and the servo inverters provide an alternative solution.

Software subsystem
Software implemented on the HMI manages the communication with the module inverter or the servo inverters if more than one module is used. The software subsystem contains all of the routines that are needed to support advanced semi-automatic straightening technology (Figure 3). The following list introduces some routines that are provided for a module:
- Parameterization (module specific zero line, wire diameter)
- Calculate the wire-specific zero line
- Calculate the absolute roll position
- Move to home position without sensors or proximity switches
- Adjust in inching mode (teach-in)
- Display set point data records
- Select, modify, save, delete or send set point data record (recipe management)
- Adjust to set point defined in a data record
- Show actual adjustment position
- Adjustment limit
- Spindle play compensation
- Overload protection
- Status display
- Access management (password)
- Change language
- Help

As an example Figure 5 shows the menu for a routine realizing a synchronous positioning of the straightening rolls (RECIPE). It uses so-called set point records or recipes. They contain the adjustment position \(a_i\) and the wire diameter \(d\) for every module. The user can select, create, edit or delete records on the HMI at any time. Once a record has been selected, the next step is to send setup information \(a_i\), which is stored in the record, to the inverters. This allows, for example, to adjust the zero line considering the actual wire diameter, a quick opening or an accurate roll adjustment in seconds.

The roll adjustments, which are needed to produce straight process material, are based on simulation of the straightening process [6] which is run using SimDATA software. SimDATA is a simple program which uses binary coded equipment libraries that contain information about the roll positions which are needed to achieve a defined finished product quality. The availability of SimDATA fulfills another advanced production criterion, because setup data for the advanced semi-automatic straightening equipment is available before the process commences. A version of the software can be supplied which can for example be used to calculate setup data in advance for production of process material with defined curvature.

**Summary**

The power requirements for the process material deformation process are based on the working principle and the main characteristics of the straightening process. A simulation program, which uses a virtual model of the straightening process, is available to support the assessment of the power requirements. Simulation in turn is based on a theoretical model of alternate elastic/plastic deformation and the relationship between bending moment and curvature during bending operations. This article describes advanced semi-automatic straightening technology. The equipment consists of mechanical, electrical and software subsystems, and it meets advanced manufacturing process criteria. Advanced straightening technology features a modular design, minimal component count, a user-friendly HMI and the availability of process and setup data prior to the start of the process. The flexibility of the design and the ability to manipulate the number and spacing of the rolls, which are the main variables, produce a system which can be used to make customer-specific products in small lot sizes. Users benefit from the strategic advantages of mass customization, which enables producers to supply exactly the product and quality which their customers are looking for.

**References**


The author of the publication Dipl.-Ing. Marcus Paech is technical managing director of WITELS-ALBERT GmbH.

WITELS-ALBERT GmbH
Malteserstraße 151-159
D-12277 Berlin
Tel.: +49 30 723 988 0
FAX: +49 30 723 988 88
info@witels-albert.com